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Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting from this model, we use a
Poisson-bracket formalism to derive the equations governing the dynamics of nematic liquid crystals. We treat
the spin angular momentum density arising from the rotation of constituent molecules about their centers of
mass as an independent field and derive equations for it, the mass density, the momentum density, and the
nematic director. Our equations reduce to the original Leslie-Ericksen equations, including the inertial director
term that is neglected in the hydrodynamic limit, only when the moment of inertia for angular momentum
parallel to the director vanishes and when a dissipative coefficient favoring locking of the angular frequencies
of director rotation and spin angular momentum diverges. Our equations reduce to the equations of nemato-
hydrodynamics in the hydrodynamic limit but with dissipative coefficients that depend on the coefficient that
must diverge to produce the Leslie-Ericksen equations.

DOI: 10.1103/PhysRevE.72.051714

I. INTRODUCTION

The Leslie-Ericksen (LE) equations [1] for the dynamics
of nematic liquid crystals have been a bulwark of liquid crys-
tal science since they were first derived over 40 years ago.
For a historical account of their derivation see Ref. [2]. They
indisputably provide a correct theoretical description of the
almost limitless variety of dynamical phenomena that nem-
atic liquid crystals can exhibit, from simple shear flow to
hydrodynamic instabilities to complex switching in display
cells.

The equations originally derived by Leslie and Ericksen
are not completely hydrodynamical. They contain an inertial
term in the equation for the director, n, specifying the direc-
tion of molecular alignment, that leads to modes that decay
in microscopic times. When this term is ignored, the result-
ing equations are purely hydrodynamical with mode frequen-
cies that all vanish with vanishing wave number. Subsequent
treatments [3,4] of the dynamics of nematics produced
purely hydrodynamical equations from the outset. To our
knowledge, all of the many experimental verifications of the
validity of the LE equations probe only the hydrodynamic
limit; they do not test the existence of or the form of the
nonhydrodynamic part of the original LE equations.

The LE equations and purely hydrodynamic treatments of
nematodynamics differ most profoundly in their treatment of
kinetic energy. In the hydrodynamic theories [3,4], the mo-
mentum density g and its related velocity field v measure the
momentum of all mass points in the medium including those
along the full length of rigid mesogens. This momentum is a
conserved quantity and is necessarily hydrodynamic. The en-
ergy density is g2/(2p), where p is the mass density. Since g
is the total momentum density, it contains all information
about angular momentum, and it is not necessary to intro-
duce additional variables to describe what we will call the
spin angular momentum associated with rotation of constitu-
ent rigid molecules about their centers of mass [3,5]. The
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other variables that appear in the hydrodynamic treatment
are the conserved mass density and the Frank director n. In
the LE treatment, there are two contributions to the kinetic
energy, a translational part g?/(2p) and a rotational part,
T,(nXn)%/2, where Z, is a moment of inertia density, aris-
ing from motion of the director. The interpretation of this
decomposition [1] of the kinetic energy is that g is now the
center-of-mass momentum density, which is a conserved
variable, and that the director contribution to the kinetic en-
ergy arises from the spin angular momentum. There are now
two contributions to the angular momentum, the spin angular
momentum and that arising from center-of-mass motion.
Neither contribution is individually conserved, but their sum
is. In the LE treatment, the equation for the director is basi-
cally an equation for the spin angular momentum, which is
neither a conserved nor a hydrodynamical variable and
which, therefore, has nonhydrodynamic decays in it.
Though the LE equations are internally consistent and re-
duce to the correct hydrodynamical form when the inertial
term is ignored, they in fact do not provide a correct descrip-
tion of spin angular momentum. Spin angular momentum is
an independent dynamical variable that is not locked to the
director, though in steady state situations it does relax to a
value determined by the local director and its rotation rate.
The spin kinetic energy is determined by the spin angular
momentum and not by the dynamics of the director. In this
paper, we describe the dynamics of nematics in terms of their
nonconserved spin angular momentum density, their con-
served mass density and center-of-mass momentum density,
and their director. For simplicity, we consider isothermal pro-
cesses only, and we ignore the equations of energy conser-
vation. We use the Poisson-bracket approach [6-11,13-15] to
derive the equations of motion for these variables. The hy-
drodynamical limit of our equations is identical to that of the
LE equations but with a slightly different interpretation of
some dissipative coefficients. Our equations also reduce to
the full LE equations when an appropriate viscosity diverges
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and spin angular momentum parallel to the director is ig-
nored. Previous investigations [13,16] have noted that spin
angular momentum should be treated as an independent vari-
able and argued that it will decay in microscopic times to a
value determined by the director. They do not, however, pro-
vide a detailed prescription for how this decay occurs or the
conditions under which the original LE equation can be re-
trieved. Finally, our equations reduce to the hydrodynamical
equations for rigid rotors on a lattice [10] when coupling to
center-of-mass motion is turned off.

Since the derivation of our results is at times algebraically
tedious, we review our main results in Sec. II. We present
first the dynamical equations that result from our analysis
and show how they reduce to the LE equations and to true
hydrodynamical equations in the appropriate limit. In Sec. III
we briefly summarize the Poisson-bracket formalism. In Sec.
IV we introduce the fluid of rigid rods and the relevant dy-
namic variables and their Poisson brackets. Finally, in Sec.
V, we derive the equations of nematodynamics with spin
angular momentum.

II. REVIEW OF RESULTS

We model our nematic as a collection of uniaxial rigid
rods. The coarse-grained variables describing this system
are the mass density p, the center-of-mass momentum
density g=pv, the spin angular momentum density 1, and the
nematic director n. The angular momentum density 1=Z€
can be expressed in terms of a moment-of-inertia density
T;=Ijnn;+I,(5;~nn;) and an angular frequency 2. The
full equations for all of these variables are

dp
- V .v=0, 2.1
PR A (2.1)
98i 8i8;
E=—V1(—pi>—vlp+vja',j, (22)
d 1
D _Qxn+-[h+A70,Q,], (2.3)
dt y
dQ) dn
ZL( d[l)LJ’-IQ”E:n X h—rﬂ%(ﬂj_—wl)
-T4(An) X n, (2.4)
aQ, 7
Iud_” = Q) h+ ATOOY) = - TR - o),
t oy
(2.5)

where AZ=7,—Z |, h is the molecular field with components
h;==(8;;—nn;) 6F/ dn;, where F is the free energy, p is the
pressure, 0;; is the dissipative and director part of the stress
tensor, A is the symmetrized strain rate tensor with compo-
nents (dv;+d;v;)/2, and w=(V X v)/2 is half the local vor-
ticity. In these equations, dA/dt=dA/dt+v-VA is the total
derivative of any field A, ¢j=n-c is the component of any
vector ¢ along m and ¢, =n X (¢ Xn) its component perpen-

PHYSICAL REVIEW E 72, 051714 (2005)

dicular to n, and An is the product of a matrix with a vector
with components A;n;. The stress tensor o;; can be decom-
posed into elastic, viscous symmetric, and viscous antisym-

metric parts,

=0+ oy + 0l (2.6)
where
af
of=———Van, 2.7
ij avjnk ,nk ( )

Oﬁ-gj' = il + %FA(Silknjnl +enn) (- ), (2.8)

O'?jl = %8”](1_‘2(91 - wl) + %FA(ninnnn - }'llA]nnn) (29)
with Fiﬁ:lﬁﬁ)nin j+F5f(5,-j—nin ;) and @, a fourth-rank tensor
of uniaxial symmetry given explicitly in Eq. (5.22).

Equations (2.1)—(2.9) provide a complete description of
the dynamics of nematics. Equations (2.1) and (2.2) are the
familiar conservation laws for mass and momentum. Equa-
tion (2.3) is the equation of motion for the director. It is
similar to that of the full hydrodynamical theory derived by
the Harvard group [3] except that the reactive term X n
depends only on the spin frequency €2 and not on A and w.
If y'=0, the director simply rotates like a rigid-body axis
perpendicular to the angular spin €. When ! is nonzero,
director motion decays to X n in a time of order K/(ygq?)
where K is a Frank elastic constant and ¢ is the spatial wave
number of director distortions. Equations (2.4) and (2.5) are
the torque equations for spin angular momentum. The spin
frequency () parallel to the director, described by Eq. (2.5),
is a nonhydrodynamic variable that decays in microscopic
times to w; plus nonlinear terms. It cannot be ignored except
in the hydrodynamic limit or in the limit in which only the
component of spin angular momentum perpendicular to the
director survives, i.e., when Z;=0, which occurs in the limit
of perfect nematic order in a system composed of infinitely
thin rods. Equation (2.5) contains a nonlinear term propor-
tional to (€2 | that has physical significance. As reviewed in
Appendix A, it causes the axis with the highest moment of
inertia to align along the direction of the angular momentum
in rigid body motion with conserved angular momentum but
not energy. The right-hand sides of Egs. (2.4) and (2.5) are
the time rate of change, dl/dt, of the spin angular momentum
projected, respectively, along directions perpendicular and
parallel to n. In the absence of dissipation, dl/dr is simply
the torque density n X h appearing in Eq. (2.4). Rigid-body
rotation in which Q=w and A=0 is a stationary state in
which dl/dt=0. If Q # w, dissipative torques, given by the
F(f and Fﬁ) terms in Egs. (2.4) and (2.5), drive  towards .
Spin angular momentum is also reoriented via the I'* term in
Eq. (2.4) by the symmetric strain rate A when it is nonzero.
The stress tensor contains a couple of terms not found in
isotropic fluids. The antisymmetric parts of the stress tensor
proportional to I'y and I‘f} are dictated by the requirement
that the total spin and center-of-mass angular momentum is
conserved (see Appendix B). The I'* contribution to the sym-
metric part of the dissipative srress tensor o"fj' is a conse-
quence of an Onsager relation.

051714-2



POISSON BRACKET APPROACH TO THE DYNAMICS OF...

When Fﬁ), I‘(f, and T are zero, spin angular momentum is
conserved, and additional diffusive dissipative terms propor-
tional to V2€ must be added to Eqgs. (2.4) and (2.5) for a
complete description. In this limit, Eq. (2.3) along with
Egs. (2.4) and (2.5) provide a hydrodynamical description of
rigid rotors on a rigid lattice with frictionless bearings, which
exhibit spin-wave excitations with a frequency dispersion
w~ g with ¢ the wave number [10].

We can now consider under what conditions our equations
reduce to the original LE equations and how the hydrody-
namical limit is obtained. We begin with obtaining the LE
equations. To approach the LE limit, we use Eq. (2.3) to
replace QX n by (dn/dt)—y 'h?, where h'=h+AZQQ |.
This converts Eq. (2.4) to

dn  1dn” dn TOAZ
IJ_nX <_]21—__>+I”Q_n— L Q”nXQ
dr- vy dt dt
=an X (h— y,N - y,An), (2.10)
where we introduced
dn
N=Z—w><n (2.11)
and
| A B I
a=1+—, —=—+—7

s ME-TagVi=—An.
y oy oy I? re

(2.12)

Equation (2.10) reduces identically to the original LE
equation [1] for the director with left-hand side equal to
Z,nXdn/d?, a=1 and =T, when y— and Z;=0.
The first condition, y— o0, constrains dn/dt to be £ X n. The
second condition, Z;=0, is equivalent to there being no rota-
tional kinetic energy associated with (), and is one that is
tacitly assumed in the original LE approach for which the
spin kinetic energy density is Z, (nXn)?/2. We will show
that Z; vanishes for rigid rods when the Maier-Saupe order
parameter S equals one, i.e., only when there is perfect order.
If nematogens are modeled by more complex rigid structures
than thin rods, /; would be nonzero even for S=1. In the LE
limit, Eq. (2.5) for ) implies that =, Together with
Q| —w, =n XN, which follows from dn/dr=€ X n and the
definition for N, the equations for the stress tensor [Eqgs. (2.8)
and (2.9)] assume exactly the form of the LE stress tensor.
Thus to reiterate, the LE equations describe a nematic liquid
crystal in which the director is forced to follow £ Xn and
the moment of inertial density parallel to the director is zero.
Neither of these conditions apply in general.

To obtain the hydrodynamic limit, we discard all terms
that are higher order in time and space derivatives than the
dominant ones. This means that we can ignore the d{)/dt
and the nonlinear terms in Eq. (2.5) relative to };— o). Thus
to hydrodynamic order, we can set {}=w;. This procedure
effectively removes () from the problem. Similarly, we can
ignore the () term in the director equation [Eq. (2.3)] and all
of the terms on the left-hand side of Eq. (2.10). The latter
condition gives the familiar LE equation, h=y,N+ y,(An) |,
for the director in which the inertial term is neglected. To
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obtain the hydrodynamic limit for the stress tensor, we use
the hydrodynamic limit of Egs. (2.3) and (2.10) and the re-
lations in Eq. (2.12) to set

Q- w) Xn:lzl—(llN—%(An)l (2.13)

1

and obtain

, 1 1
0?3' = E?’l(niNj - ani) + Eyz[ni(An)J_j - "j(An)u],

(2.14)
/ 1
O-fj = QA+ Eyz(n,-Nj +n;N))
1 (FA)2
_574. [‘Q[ni(An)ij"'nj(An)u]- (2.15)
L

This is precisely the LE stress tensor in the hydrodynamic
limit.

An important consequence of this analysis that treats an-
gular momentum as an independent variable is that it dem-
onstrates that two distinct effects contribute to the viscosity
1, the director damping measured by y and the rotational
friction measured by F?. v, is the parallel combination of y
and I'! [see Eq. (2.12)].

In Ref. [11] we derived dynamical equations for the full
nematic order parameter Q, also called alignment tensor, us-
ing the Poisson-bracket formalism without, however, intro-
ducing the spin angular momentum density as a separate
dynamic variable. With the approach presented in the follow-
ing, we could also derive dynamic equations for Q and then
by projection on the uniaxial part of Q arrive at an additional
dynamic equation for the scalar order parameter. A similar
consideration following Egs. (2.10)—(2.12) should then lead
to the extended LE equations of Ref. [12], where a variable S
is taken into account. The field S is a nonhydrodynamic vari-
able that relaxes in microscopic times. It does not, however,
contribute to dissipative coefficients in the hydrodynamic
limit as the spin angular momentum, which also has a rapidly
decaying nonhydrodynamic component, does [see Eq.
(2.12)]. We will, therefore, not treat S (or the biaxial part of
Q) in what follows.

In the remainder of the paper we give a detailed account
of how the set of equations discussed in this section were
derived. We start with a short review of the Poisson-bracket
formalism.

III. GENERAL FORMALISM

In this section we collect the important formulas of the
Poisson-bracket formalism. A more thorough explanation in-
cluding original references can be found in our previous pa-
per [11] and in Ref. [10].

We consider a systems whose microscopic dynamics is
determined by canonically conjugate variables q* and 7 for
each particle « and a microscopic Hamiltonian

'ﬂ({q"‘},{ﬂ'“}). Rotational degrees of freedom may be in-
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cluded in the coordinates q® and momenta 7“ We are
interested in the slow dynamics of of a set of macroscopic
field variables ®,(x,r) (u=1,2,...) obtained from
microscopic fields qgﬂ(x,{q“},{ﬂ'“}) by coarse-graining
over spatial fluctuations on the microscopic level; ® ,(x,?)
=[(I3M(x,{q“},{w“})]c, where the symbol [ -], specifies the
coarse-grained averages. The statistical mechanics of the
macroscopic fields (I)M(x,t) is determined by the coarse-
grained Hamiltonian H[{® ,}].

Following the theory of kinetic or stochastic equations,
the macroscopic variables evolve according to

M = VM(X) _ 1"

o (3.1)

" ob,(x)’

where we disregard any noise. The reactive term V,(x), also
called the nondissipative or streaming velocity, is expressed
with the help of Poisson brackets as

V(x) =~ f dx' P (x.x") (3.2)

8P ,(x")’

where Einstein’s convention on repeated indices is under-
stood and

Pu(xx) ={®,(x),®,(x")}=-P,,x".x)  (3.3)

denotes the Poisson bracket of the coarse-grained variables.
It is defined as the coarse-grained average of the microscopic
Poisson bracket,

{©,(0,®,(x)} = [{$,(x),D,(x")}].. (3.4)

where [17]

NN ob (x) b, (x') b (x) ob,(x")
{000, )y =2 — 2 === - — a
w0 0g; aq; o

L

(3.5)

Since we only employ a restricted number of macroscopic
variables, all the “neglected” microscopic degrees of free-
dom give rise to the dissipative term in the kinetic equation
(3.1) that is proportional to the generalized force
SH/ 8P, (x), which together with ®,(x) forms a pair of con-
jugate variables. The dissipative tensor I',, may depend on
the fields @, and it may also contain terms proportional to
—V2. It is determined by three principles. First, the dissipa-
tive contributions to the equation for 9®,,/dt must have the
same sign under time reversal as ®, (and thus the opposite
sign to that of o’KI)M/ dt). Second, F;w must reflect the local
point group symmmetry of the dynamical system, and third,
it must be a symmetric tensor at zero magnetic field to obey
the Onsager principle [18]. In the following, the last point
will be important in identifying the proper dissipative terms
in the momentum balance.
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IV. POISSON BRACKETS FOR NEMATIC LIQUID
CRYSTALS

A. Model molecule and dynamic variables

We model our system as a fluid of uniaxial rigid rods
of length a and mass m. We describe the position of molecule
a by its center-of-mass coordinate x“ and its orientation
by the unit vector #* The center-of-mass momentum
is p*=mv*=mx“ where the dot means total time derivative.
With the help of the molecular order-parameter tensor Q¢
with components

@ _ aaaaw 1
Qij= 7% =36,

4.1)
the molecular moment-of-inertia tensor (relative to the center

of mass) reads

A PN 2 1
IE= 1005+ 1,(8; - 5790 = A1Q% + (31, +31,) 8,

(4.2)

where 7, and [;<I, are the moments of inertia for rotations
about axes perpendicular and parallel to %, respectively, and
Al=1—1,. Note that /;=0, and A/=-/, in the limit of infi-
nitely thin rods. The tensor I¢ relates the spin angular mo-
mentum of a molecule, 1%, to its angular velocity Q%,

6= 150

(4.3)

Note that 1% is always perpendicular to »“ as it should be for
an infinitely thin rod.

The microscopic Poisson bracket in Eq. (3.5) consists of a
spatial and an angular part. The spatial contribution arises
from the coordinate x® and its conjugate momentum p¢,
which fulfill the canonical Poisson bracket [17],

{pixl}= 55,

where 6*# and 6;; are Kronecker symbols. However, the unit
vector ¥* and the angular momentum 1¢ are not canonically
conjugate to each other since their Poisson bracket [17]

{12, 9%) = — 6"Pe ;7 (4.5)

does not have the canonical form (g, denotes the Levi-
Civita symbol). We could now introduce appropriate pairs of
conjugate angular coordinates and momenta via a micro-
scopic Legendre function. Instead, we follow an alternative
route. It turns out that, in the following, Eq. (4.5) and the
additional formula

(4.4)

{1717y = = P} (4.6)

are sufficient for calculating the angular part of Poisson
bracket (3.5). All other Poisson brackets, in particular the
ones between the spatial and angular variables, are zero. The
Poisson brackets in Egs. (4.5) and (4.6) are a consequence of
the fact that [{" is the generator of rotations about the molecu-
lar center of mass [13]. They can, or course, be derived from
a Hamiltonian formalism for rigid rods in which the rota-
tional kinetic energy depends on two Euler angles for the
case of infinitely thin rods (/;=0) and three Euler angles for
the more general case.

We are now ready to define the relevant microscopic field
variables and their coarse-grained counterparts. The conven-
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tional microscopic definition of the density of mass and
center-of-mass momentum are

p(x) =m>, 8(x —x%) (4.7)

&(x) = 2 pealx -x9), 4.8)
which, after coarse graining, result in the macroscopic vari-
ables p(x)=[p(x)]. and g(x)=[&(x)].=p(x)v(x). The last
term defines the macroscopic velocity field v(x). In a similar
manner we introduce the macroscopic field Q(x) of the nem-
atic tensorial order parameter [4,16,19,20], also called the
alignment tensor [21]:

p(x)

FoQu) = (2 Qd(x - x“)) (4.9)

c

using Q¢ from Eq. (4.1). The factor p(x)/m is introduced to
make Q(x) unitless. With the microscopic definition for the
density of the moment-of-inertia tensor,

(x) El“&(x x“

=2 [AIQ,ﬁ (21L + ;In) ,,-] S(x - x%),
(4.10)

we obtain the coarse-grained moment-of-inertia density

T/(x) = p(){AlQU(X)+(2Il+;I>5] (4.11)

Finally, the microscopic field of the density of spin angular
momentum is

1(x) = 2 178(x - x%). (4.12)

Its associated coarse-grained variable is l(x):[i(x)]c
=Z(x)Q(x), where the last expression defines the macro-
scopic field € (x) of angular velocity in full analogy to v(x).

We are interested in the dynamics of the nematic phase
where the orientational order is uniaxial. The alignment ten-
sor therefore assumes the form

Qij(x) = S[ni(x)nj(x) - %51']'],

where, on average, the molecules point along the director
n(x). The Maier-Saupe order parameter S is constant in the
nematic phase. With the uniaxial Q(x) of Eq. (4.13), the
moment-of-inertia density Z(x) of Eq. (4.11) becomes

(4.13)

with

p(2. 1. 2
Z-H:_ _1L+_I||+_AIS N
m\3 3 3
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7 p<21 L lAIS) (4.15)
=—\=I, +-1-= . .
L= A\ T 3073
Its anisotropy is quantified by
p
AZ=7,-7,=AI-S. (4.16)
m

Note, as indicated in Sec. II, that Z;=0 in the limit of infi-
nitely thin rods (/,=0) and perfect nematic order (S=1).

Thus, our set of dynamic variables is {p,n,g,l} for which
we must determine all possible Poisson brackets.

B. Poisson brackets

The calculation of the Poisson brackets is straightforward.
In addition to the comments about the angular variables in
the preceding section and the antisymmetry relation ex-
pressed in Eq. (3.3), we use properties of the & function
summarized as

Ox—-x")=68(x" —x), (4.17a)
fx)o(x-x")=f(x")o(x —x'), (4.17b)
V.ox-x")==-V"8x-x'), (4.17¢)

where V;=d/dx;, V/=3/dx], and f(x) is an arbitrary function
including the & function itself.

In the following, we list all the nonzero Poisson brackets
which determine the nondissipative velocities of our dy-
namic variables. The dynamics of the center-of-mass density
p(x) is provided by

{p(x).g:/(x")} = V;8(x - x")p(x").

To derive the Poisson brackets of the director, we first
calculate the Poisson brackets of the alignment tensor. Ac-
cording to the definition (4.9), we only have a microscopic
expression for p(x)Q(x) but not for Q(x) alone. An analo-
gous, however more complicated, situation occurred in our
previous paper [11]. To calculate, e.g., {Q;;(x),gx(x")}, we
apply the product rule for Poisson brackets to
{p(x)0;/(x). g(x")} and arrive at

(4.18)

10400, 8:(x")} = ——{p(x)Qy(x).gu(x")}
p(x)

_ 2 ) e,
p(x)

The first term on the right-hand side and the second term,
already known from Eq. (4.18), then combine to yield

{Qij(x),gk(xl)}z Vk(s(X_X’)Qij(X,)- (4.20)
In the same manner, we calculate

{0;(x), L(x")} = = [ Qi(x) + £,Q;,(x)]o(x = x),
@.21)

(4.19)

where we have used the product rule and Eq. (4.5) to evalu-
ate the microscopic Poisson bracket {Qi”;, lf} and the fact that
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{p(x),(x")}=0. The Poisson brackets for the director now
follow by projection from the uniaxial representation (4.13)
of the alignment tensor (see Ref. [11] for details):

1
{ni(x).g;(x")} = E@a{ka(X),gj(X')}nz(X), (4.22)

where

T
5;‘/'—51"—”1‘”1

(4.23)

is the projector on the space perpendicular to n(x). The same
formula is valid with g;(x") replaced by /;(x’) so that Egs.
(4.20)—(4.23) finally give

{ni(x),g;(x")} =[Vn,(x)]8(x —x") (4.24a)

{ni(x),[;(x")} = = &jum(x) S(x = x"). (4.24b)

Note that the Poisson brackets of Q;;(x) and n,(x) with g,(x")
are much simpler in this formulation with spin angular mo-
mentum than they are in the alternative one [11,22] in which
there is no spin angular momentum and g is the total rather
than the center-of-mass momentum density. In particular, the
director-momentum bracket \;; V,8(x~x") that plays such an
important role in the latter formulation is not present in the
current one.

The reactive velocity of the translational momentum fol-
lows from

{8:(x).p(x")} = p(x)V;0(x - x"), (4.25a)

{gi(x).n;(x")} == [Vni(x)]6(x -x'),  (4.25b)
{8:(x),g;(x")} == V" [8x - x")g;(x")]+ V;8(x - x")gi(x"),
(4.25¢)

{gi(x),[;(x")} = [;(x)V;8(x = x). (4.25d)

Equations (4.25a) and (4.25b) are related to Egs. (4.18) and
(4.24a) by the antisymmetry relation of the Poisson brackets
whereas Eqgs. (4.25c¢) and (4.25d) are readily calculated.
Again the missing term in the momentum-director bracket
compared to Ref. [11] is compensated by the additional Pois-
son bracket (4.25d).

Finally, the nondissipative dynamics of the angular-
momentum density is governed by

{li(X),nj(X')} =- Sijknk(x) 5(X - X,), (4263.)
{1(x),g,(x")} = 1(x")V,;8(x = x), (4.26b)
{1(x), [i(x")} = — gl (x) S(x - x'). (4.26¢)

V. NEMATODYNAMICS WITH SPIN ANGULAR
MOMENTUM

Following the systematic structure of the theory outlined
in Sec. III, we now derive the full set of equations as pre-
sented and discussed in Sec. II. We first calculate the reactive
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and dissipative velocities needed to formulate the dynamic
eqations for the set of dynamic variables {p,n,g,1} and then
introduce the spin angular velocity €.

A. Nondissipative velocities

To calculate the nondissipative velocities from Eq. (3.2),
we need the Hamiltonian

2
H= f (% + %li(x)l-i_jl (x)l_f(X)>d3x + Flp(x),n(x)].
(5.1)

It consists of a kinetic part, subdivided into a translational
and rotational term, and a free energy F[p(x),n(x)]
=[f(p,n,Vn)dx, which is Frank’s free energy plus a term
depending only on p. In the following, we will need deriva-
tives of the inverse of the moment-of-inertia density such as
&Ii_jl/ dy where y stands for p or n. Taking the derivative of
Z JIJ“,: =y, with respect to y, we find

G K4 1
51; =—Ty (5%1)1} .

The nondissipative velocity for the density is simply
VP=-V.g(x) which immediately gives the mass-
conservation law. For the director, we use the Poisson brack-
ets (4.24) and the fact that 57-[/51]-(X’)=I;kllk=ﬂj(x’) and
arrive at

(5.2)

Vi=—v(x) Vn(®) + e (0mx).  (5.3)

The first term on the right-hand side is the convective deriva-
tive of n. The second term introduces a reactive coupling to
the angular velocity €2(x). In the purely hydroydnamical
model [3,11], this term is replaced by \;;V;v, coupling
dn;/dt to the symmetric and antisymmetric parts of the
deformation-rate tensor Vv ;.

The nondisspative velocity V2 is calculated with the help
of the Poisson brackets (4.25). Applied to the rotational part
of the kinetic energy in H, i.e., lli(x)I?jl(x)lj(x), they pro-
duce a contribution V& to the non-dissipative velocity V&

rot
whose terms add up to zero. Specifically, we find

I 1 0L
rot,i:_pvi<51kll O.’p‘ +(Vi”j) Elkll on, _lein’
(5.4)

which we rewrite as

1

1__, 1Ly
rot‘i:V,‘ EIIEZ i) =V, PElkll ap _Vi(ljﬂj)'

(5.5)

Using Eq. (5.2) to evaluate the derivative with respect to p
and the fact that Z, is linear in p [see Egs. (4.14) and (4.15)],
one shows immediately that the three terms add up to zero,
i.e., V& ,=0. All the other contributions to V# can be written
in a compact form,
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+V.oF

Vg=_vj(gi(_x)g.@>_vi iTij (5.6)

' p(x)

as explained in Ref. [11]. The first term on the right-hand
side introduces the momentum flux tensor, the second term
contains the pressure p, and o is the Ericksen stress tensor,

O‘E———ank.

5.7
e (5.7)

Note that compared to Ref. [11] a term that contains the
molecular field 6F/dn is completely missing.

Finally the Poisson brackets (4.26) give the reactive ve-
locity of the angular-momentum density,

1 dL)  sF
V=g, (—zz =4 )
i sljknk(x) 2 rts (9nj 5nj(x)

=V [LX)0,0] + £ (LX),

(5.8)

Again, one can show using Eqgs. (4.14) and (5.2) that the first
and the fourth term on the right-hand side resulting from the
rotational kinetic energy cancel each other so that we obtain

Vi=-v LX) ()] + & (x) —— (5.9)

5()

The first term introduces the angular momentum flux tensor
in full analogy to the linear momentum and the second term
is a coupling to the molecular field.

B. Dissipative velocities and final equations
1. Center-of-mass density

For the conserved center-of-mass density, dissipative ve-
locities are not allowed, and the mass-conservation law fol-
lows:

ap

—=-V.g. 5.10
P g (5.10)
2. Director

The time derivative dn/dt couples dissipatively only to
forces conjugate to fields, n and p with the same sign under
time reversal as n. A dissipative term proportional to
noH/ dp, which has the correct sign under time reversal,
cannot occur because it is always perpendicular to dn/dt
[11]. A second dissipative term introduces a coupling to
SH/ on; with a dissipative tensor 5 ./ vy, where the projector
5T deﬁned in Eq. (4.23) ensures that on/dr is perpendicular
to n and vy is a rotational viscosity. Together with Eq. (5.3),
the dynamic equation for the director then reads

(?nl' 1 T 1
—=—V~Vn,»+8,-ijjnk—;@j(zlkl,

i 5F)
or

on 5n
(5.11)

J

With the definition of the components of the molecular field,
hiz—(Sl-Tj(SF / én;, and the expression
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-7,)0,Q,, (5.12)

1]2
Which we derive with the help of Egs. (4.14) and (5.2) and
=7,/ Q);, we finally arrive at the director equation as pre-

ij25js
sented in Eq. (2.3) in Sec. IL

sl dIy,
0 lkl, - (7
on;

3. Spin angular momentum density

The fields 6H/ 6l;=); and SH/ 8g;=v; have the same sign
under time reversal as 1 and can contribute terms of the equa-
tion for dl/dt. To determine the form of these terms, it is
important to realize that 1 and € are pseudovectors that
do not change sign under space inversion but that the mo-
mentum density, g, and the velocity, v, are vectors that do
change sign under space inversion. Thus a term directly pro-
portional to v; in the equation for d/;/dt is prohibited but one
proportional to €); is not. Pseudovectors that are even under
n——n can be constructed from the spatial derivatives of v
and the director. Thus we look for dissipative terms contain-
ing these pseudovector combinations of Vup;. The first
pseudovector is w;=¢&;;V,v;/2. Together with the angular ve-
locity, it gives rise to the dissipative term FQ(Q - ;)
whose form is dictated by the requirement that durlng a uni-
form rotation of the whole sample (=) no energy is dis-
sipated. A second pseudovector of the velocity, which pre-
serves the m——n symmetry of the nematic phase, is
%(si_ﬂnlnk+siklnlnj)Ajk, where A =(V,v,+V,v,)/2 stands for
the symmetrized velocity gradient. Furthermore, the third-
rank tensor in front of A is symmetric in j and k, which is
important for the next paragraph where we use the Onsager
principle to find the dissipative velocities for the momentum
density. Introducing the dissipative torque

A

- Ff}(ﬂj - (1)]) - 7(8iﬂnlnk + siklnlnj)Ajk, (513)

where

I =P+ T8, =) (5.14)

obeys the uniaxial symmetry of the nematic phase, and com-
bining it with Eq. (5.9), we arrive at the formula describing
the dynamics of 1,

ol; oF
E_ V(lU)"‘El]knk(Sj"'Ti. (515)
To replace 1 by the angular velocity, we write
l=I||QHn+ILQL. (516)

The time derivative of 1 involves dZ,/dt, where « represents
Il or L. We find

= -Vi(Zw),
a  op o

(5.17)
where we used the fact that Z,, linearly depends on p [see Eq.
(4.15)] and where we also employed the mass-conservation
law dp/dr==V(pv;). With Eq. (5.17) and the definition of
the total time derivative, d/dt=3d/dt+v,;V;, it is straightfor-
ward to show that
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+ Q”— +n—'  (5.18)

Jl. aQ
SV (lv)=T, L
o F Vi) =1, dar M ar

dt
We introduce this term into the balance equation (5.15) for 1
and project it on n and the plane perpendicular to n to finally
arrive at the respective Egs. (2.5) and (2.4) in Sec. II. In
deriving the last two terms of Eq. (2.5), we also used
n-dQ) , /dt=—(dn/dr)-Q, and replaced dn/dr by Eq. (2.3)

4. Center-of-mass momentum density

The dissipative term of the momentum balance is deter-
mined by the viscous stress tensor o', which couples again
to {); and V,v; as in the preceding paragraph. The form of the
dissipative part of the stress tensor is subject to restrictions.
First of all, because the total angular momentum (spin plus
center-of-mass) is conserved, the antisymmetric part o*’ of
the viscous stress tensor and the dissipative torque 7' of Eq.
(5.13) are related (see Appendix B):

013', 281/ka - zsljkrsl(ﬂl wl) + %FA(ninnnn - niAjnnn) .
(5.19)

To construct the symmetric part o' of the viscous stress
tensor, we use Onsager’s principle. It says that the dissipative
fluxes 7', o are coupled to the generalized forces Q—w, A
by a symmetric, dissipative tensor. In symbolic notation this

means

-7 r‘*  Iemn\(Q-o

= s , ,  (5.20)

A I'(enn) o A
where the superscript ¢ in (enn)’ stands for the appropriately
transposed third-rank tensor enn of Eq. (5.13). The first line
of the tensor equation reproduces the dissipative torque
(5.13), the second line gives

Oﬁ'gj’ = @A+ %FA(Silknjnl + 8_/1kninz)(9k - wy),

(5.21)

where the viscosity tensor e has the usual form required by
the uniaxial symmetry of our medium (see, e.g., Ref. [11]),

Qi) = QNI+ = (511( i+ 616, k)

a5+a6

(ninké}-l + njnk5l +n; nléjk +n; nl lk)

+ gl 5,~j5k1+ (2(@inknl+ninj5k]). (522)

Adding up reactive and dissipative terms, the momentum
balance finally reads

c?gi 8i8;j ’ '
5=—V1<7) ~Vip+Vj(oj+ 0 +af). (5.23)

The complete set of equations of nematodynamics includ-
ing the spin angular momentum is reproduced in Eqgs.
(2.1)—(2.9). The Leslie-Ericksen and hydroydnamic limits of
these equations are derived in Sec. II.
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APPENDIX A: NONLINEARITIES IN RIGID-BODY
MOTION

Our equation for the director reduces to that for
the anisotropy axis n for a single uniaxial rigid body
if n(x) is independent of x and h=0. If I‘Q—O and "=

spin angular momentum is conserved [see Eq (5.15)], i.e.,
dL/dt=d/di(fd*x1)=0, and Q=L/I, and Q =L, /T,

where ’IVH’ =JdT, . The equation of motion for the aniso-
tropy axis is then

dn

AT
Q Xn+ _QHQJ_
dr

(A1)
This equation has a dissipative term implying that energy is
not conserved even though spin angular momentum is. Since
L is a constant, we can choose it to be a vector Le, of fixed
length pointing along the space fixed unit vector e, along the
z axis. When n=(sin 6 cos ¢, sin @sin ¢,cos 6) is expressed
in polar coordinates relative to the z axis, Eq. (A1) reduces to
the equations

d L
@ _L (A2)
dt I
a9 1 AT |
== 3-——Lsin20. (A3)
! YL,

The equation for @ is easily solved subject to the boundary
condition that 6(r=0)=6,,

tan 6(r) = tan 6, exp(— (A4)

1 AT )
—rth .
4YIT,
Thus, if Z,>Z,, 6(1)—0 if 0<6,<7/2 or 6(r)— 7 if
m/2<6y< as t— . This means that n will align or anti-
align with the angular momentum direction and that the an-
gular momentum comes entirely from spinning parallel to
the anisotropy axis with kinetic energy L/ (21). If Z,<Z L,
0(t) — /2 for 0< 6, <. In this case, n lies in the xy plane
and rotates according to Eq. (A2), and the kinetic energy is
L2/(21 ). Thus, when angular momentum is conserved but
energy is not, the rigid body will evolve toward the state with
the lowest kinetic energy consistent with the constraint of
fixed angular momentum.

APPENDIX B: TORQUES AND STRESS TENSOR

Here we shortly demonstrate that the antisymmetric part
of the stress tensor is equivalent to a torque acting on the
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intrinsic angular momentum. The total angular momentum of
a system with volume V is given by

L=f (px X v +Dd’x. (B1)
\4

In case of zero body forces and torques (which might origi-
nate from applied magnetic and electric fields or gravitation),
only surface forces can change the total angular momentum.
Per definition they are described by the stress tensor o so that

dL
—=f x X odf, (B2)
v

dt

where dV means surface of V. Applying Gauss’s theorem to
the right-hand side results in

dL
— = J (x X div o+ Pd’x, (B3)
dt oV

where we introduced the torque
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Ti= - sijka'jk. (B4)
With
dL dv dl
— = pX X — + — (B3)
dt v dt dt
and the momentum balance in differential form,
A
— =div o, B6
p=dive (B6)
we obtain from Eq. (B3)
dl
— =7, B7
ki (B7)

where 7 is the torque acting on 1.
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